

Crash Course in Monads

Vlad Patryshev

Introduction

Monads in programming seem to be the most mysterious notion of the

century. I find two reasons for this:

 lack of familiarity with category theory;

 many authors carefully bypass any mention of categories.

It's like talking about electricity without using calculus. Good enough to

replace a fuse, not good enough to design an amplifier.

This crash course starts with an easy introduction to categories and functors,

then we define a monad, then give some basic examples of monads in

categories, then present monadic terminology as used in programming

languages.

I am sure that if you approach the topic from categorical point of view,

everything will look almost elementary.

Vlad Patryshev, 3/7/2006 - 2/12/2007

mailto:vpatryshev@gmail.com

Category

 A category consists of objects and morphisms between objects. The term

"morphism" is a little bit misleading (they are not required to morph

anything); so morphisms are frequently called "arrows", to stress their

abstract nature. I'll use the term "arrow" except when an arrow represent

some kind of function, in which case I'll call it a "morphism". But it's still just

an arrow to me.

We do not care about the nature of object and arrows; all we need are the

following properties:

An arrow starts at an object and ends at another (may be the same object); this

is denoted in the following way: f: a → b, where f is an arrow, and a and b are

objects;

1. For arrows f:a → b and g:b → c there is an arrow

h: a → c that is called their composition: h = g ° f.

2. For each object a there is a unit arrow, ida: a → a, such that for any

f: a → b the following is true:

f ° ida = f, and for any g: c → a we have ida °g = g.

3. Composition is associative: f ° (g ° h) = (f ° g) ° h.

Note. Due to an extremely abstract nature of the notion, we cannot even expect

"all objects" to form a set, or "all arrows from a to b" form a set. Categories

where these are sets are called "small" and "locally small".

http://en.wikipedia.org/wiki/Category_theory

Examples of Categories

 The following examples are "classic" categories.

1. Set - a category of all sets. Its objects are all sets; its morphisms are

set functions.

2. Setf - a category of all finite sets and functions between them.

3. Rel - a category where objects are all sets, and binary relationships

play the role of morphisms. Composition is defined via inner join.

4. Part - a category of all sets and partial functions as morphisms. A

partial function from X to Y is a function from a subset X0 ⊂ X to Y:

 X0 ↪ X

f ↓

 Y

5. Top - a category of all topological spaces and continuous functions

between them.

More Examples of Categories

There are more categories in the world than just general theories.

1. Any group can be considered a category: group elements are

morphisms over one single object. Id is the group's neutral element.

Composition is multiplication.

2. A partially ordered set can be represented as a category. The set's

elements are objects. Add a single arrow a → b for each pair a, b

such that a < b, and unit arrow a → a for each a.

For each pair of objects there's no more than one arrow, and since

partial order is transitive, we have composition (a<b, b<c => a<c),

and there is no need to worry about its associativity.

3. As a special case of the previous example, a segment of integers,

[N..M] can be thought of as a category.

4. Take any oriented graph. We can turn it into a category by treating its

paths as arrows. An empty path is a unit morphism; path

composition is concatenation.

5. Natural numbers as objects, matrices as morphisms. Matrix

multiplication would play the role of composition; a unit N×N

matrix is a unit morphism N → N.

(You can skip the next page)

m-f.html

Extra Material

It is easy to define an isomorphism in a category: it is the one that has an

inverse.

 That is, if we have f: a → b and g: b → a, and f ° g = idb and g ° f = ida.

We will need this notion later on. A monomorphism and an epimorphism

could be also defined, but it takes more efforts, and we are not going to

cover them here.

Remember [0..N] objects from the previous page? There are two special

categories, 1 = [0], and 2 = [0..1]. The first one has just one object and one

morphism; the second one has two objects and three morphisms.

Do categories themselves form a category? They would, but we need to

define arrows between categories. That's the second order arrows, and they

are called functors.

Functor

A functor maps one category to another. To do this, we have to map objects

of the first category to objects of the second category, and arrows

(morphisms) of the first category to arrows of the second category, in a

consistent manner.

What kind of consistency do we expect? Let X and Y be two categories, and

let's start defining a functor F: X → Y. We have to map objects of X to Y,

having for each a in X an object F(a) in Y, and for an arrow f in X we have

to have an arrow F(f) in Y.

For consistency we will need the following:

 for f: a → b have F(f): F(a) → F(b) - domain and codomain

preservation;

 for ida: a → a have F(ida) = idF(a): a → a - unit preservation;

 for f:a → b and g:b → c F(g ° f) = F(g) ° F(f) - composition

preservation.

Functor composition is defined in an obvious way: apply one functor, then

another.

http://en.wikipedia.org/wiki/Functor%20%09

Examples of Functors

 1. Identity functor: for a category X an identity X → X keeps objects and

arrows intact. Still it is a functor.

2. Setf ↪ Set - a functor that includes Setf into Set, that is, maps

each finite set to itself, and the same with functions. Note that this is

not an identity functor.

3. Set → Top - similar to the previous example, this functor makes

Set a part of Top. Each set is mapped to a discrete topological

space.

4. For any set A we can define the following functor:

(- xA): Set → Set - it will map any set X to a Cartesian product, X
× A.

5. For any set A we can define a functor PA: Set → Set; it maps any set

X to XA, a set of functions from A to X.

6. Set ↪ Part embeds sets to sets with partial functions: it maps sets

and functions to themselves.

7. An opposite to 6. is a functor +Null: Part → Set -this functor adds

an "extension" Null to each set: X ↦ (X+Null), so that a partial

function X → Y maps to a function (X+Null) → (Y+Null).
(Exercise. Define such an extension for partial functions.)

m-cex1.html

More Examples of Functors

Again, let’s take a look at small categories and their functors.

1. If we consider groups as categories, what would be their functors? A

functor must preserve unit morphism and composition. Hence, a

functor is just a group homomorphism.

2. Any order-preserving (a.k.a. monotonous) function between two

partially ordered sets is a functor.

3. Take a pair of oriented graphs and a ma that preserve edges. We can

extend this map to a function that maps path from one graph to paths

of another graph. This function, by definition, preserves

concatenation and empty paths, thus it is a functor from one graph-

generated category to another.

4. Remember category 1? Now, how would a functor from 1 to a

category C look like? 1 has just one object, and an identity

morphism. So, to specify such a functor is the same as to select an

object in C - and vice versa, for any object X in category C we can

specify a functor PointX: 1 → C

Natural Transformation

This is probably the most difficult part of this presentation... Suppose we

have two functors, F,G: X → Y. A natural transformation φ: F → G is

defined when for each object

x ∈ X there is an arrow φ(x): F(x) → G(x) in Y, and we have the following

property:

 for all f: a → b the equality is true: φ(a) ∘ G(f) = F(f) ∘ φ(b).

 F(a)

F(f)

F(b) →

φ(a)↓ ↓φ(b)

 G(a) →
 G(b)

G(f)

That's why it is called 'natural' - it acts consistently with the functors actions

on arrows.

http://en.wikipedia.org/wiki/Natural_transformation

Examples of Natural Transformations

1. Remember point functors? Now, if in category C we have an

arrow f: a → b, this arrow defines a natural transformation from

Pointa to Pointb. There is a one-to-one match between

transformations of Point functors and arrows of a category.

2. Let's take two sets, A, B, and a function f: A → B. This function

determines a natural tranformation between functors

(- ×A),(- ×B): Set → Set.

(-×f): (-×A) → (-×B) by the following formula: (x,a) ↦

(x,f(a)).

I feel a temptation to write the definition like this:

(define (cartesian f)

 (lambda (x a) (list x (f a))))

Since for every set A there is a function A → (.), where (.) is a

singleton set, we have a natural transformation (-×A) → 1 that

for each object X is just a projection: X × A → X.

More Examples of Natural Transformations

For each A in Set there is a natural transformation 1 → PA. Take any X in

Set; we need a function from X to X
A
. The natural choice would be the one

that maps each element x of X to a constant function from A to X that

returns x.

Again, I feel a temptation to write the definition like this:

(define (return x) (lambda (a) (x))

Monad

A monad in category C is an endofunctor F: C → C with two natural

transformations:

u: 1 → F and m: F ∘ F → F.

Let's denote F(u): F -> F ∘ F the transformation that results in applying F to

u, and F(m) : (F ∘ F) ∘ F → F ∘ F.

Having these, now we can write down the following two monad axioms:

1. F(u) ∘ m is identity F → F

:

 F(X)

F(uX)

F(F(X))

mF(X)

F(X) → →

2. F(m) ∘ m is the same as m ∘ m:

 F(F(F(X)))

F(mX)

F(F(X)) —→

mF(X)↓ ↓mX

 F(F(X)) —→
 F(X)

mX

http://en.wikipedia.org/wiki/Monad_%28category_theory%29

Examples of Monads

1. For any category C an identity monad can be defined. It

consists of an identity functor and identity morphisms.

2. Suppose we have a group G. Let's define a monad MG in Set.

The monad functor will be like this:

X ↦ X × G.

u(X) : X → X × G maps an element x to a pair (x,e), where e is

the group's unit.

MG(MG(X)) = (idX,mG), where mG is the group multiplication.

3. Lists in Set. For a set X the result of applying the functor, let's

call it List, is the set of all lists, (x1,x2,x3...), including the

empty one, of elements of X. This functor becomes a popular

monad if we add u and m. Let uX : X → List(X) create a

single-element list for each x∊X.

And mX: List(List(X)) → List(X) maps lists of lists to plain

lists by flattening them

More Examples of Monads

Closure operation. Not related to closures in computer science.

Remember that we can treat partially-ordered sets and their order-preserving

functions as categories and functors?

A monotonous (order-preserving) function C: X → X is called closure if

∀x∊X x <= C(x) and C(C(x)) = C(x).

These two conditions are exactly what monad axioms turn into when applied

to a partially ordered set - meaning that monads in partially ordered sets are

just closures. We can also try to apply this to the partially ordered set of

paths in a graph.

(skip the next page if it is too difficult)

http://en.wikipedia.org/wiki/Closure_operator
m-prog.html

Exception Monad

We are in Part category. Take an set A, and let's define the following

functor:

PlusNull: X ↦ (X+Null)

We already talked about this functor, and last time it was from Part to

Set. This time we composed it with the inclusion of Set to Part, thus

getting an endofunctor.

Why is it a monad? We need uX: X → (X+Null) and mX: ((X+Null) +
Null)→ (X + Null) .

The first one is a simple inclusion; the second one maps both Null
singletons to Null. In Lisp it looks like this:

(define (ux x) x)

(define (mx x) x)

As you see, it is a monad (if you don't, prove it as an exercise).

m-cex1.html

State Machine Monad

We are in Set category. Take an set A, and let's define the following

functor:

X ↦ (X×A)A

We can think of A as a machine's set of states; then (X × A)A consists

of all state machines on X with output to X, that is, all functions A →
(A × X), the first component being transition, and the second an

output to X.

Why is it a monad? uX : X → (A × X)A maps any element x ∊ X to a

function that is identity on A and the constant x on X.

Let me express it in Lisp:

(define (ux x)

 (lambda (a) (list a x)))

How about mX : (A × (A × X)A)A → (A × X)A?

State Machine (continued)

Yes, how about mX : (A × (A × X)A)A → (A × X)A?

We have another collection of state machines, mX : (A × (A × X)A)A, which

has A as a state set, and which outputs to another collection of state

machines (this one too has A as a state set, and X as output set).How do we

find for such a compound state machine a match in a state machine on A?

Write it in Lisp:

(define (mx f)
 (let (tr1 out1)

 ((car f)(cadr f)));two components of f:A → (A × (A × X)A

 (lambda (a)

 (let a1 (tr1 a));state after first transition

 (let f2 (out1 a)) ;mapped a state to another state machine

 (let (tr2 out2) ((car f2) (cadr f2))) ;second machine
components

 (list (tr2 a1) (out2 a1))))

See what happens here: we have a function from A to A×(A×X)A, which

consists of transition A → A and output A → (A×X)A, that is, for each a we

have another state a1 and an output function; the resulting function from A

to A×X should just apply that output function to the new state.

Boring Exercise: Prove that this is actually a monad.

Monads in Programming

 From categorical point of view, functional programming consists of

representing a program as a morphism in a category: f: X → Y, where X is

"input", and Y is "output". (The advantage of such a model is that we can immerse all

our statement regarding programs into a very stable and sound category theory; we can vary

the nature of objects and categories, change the logic of the underlying topos and still be

100% aware of what we are talking about. E.g. instead of "fuzzy logic" we can use intuitionist
logic and Kripke-Joyal semantics.)

Certain programming activities seem not to fit into this model: e.g.

exceptions and side effect.

To deal with exceptions, one solution is to introduce a NullObject, or a NaN

numeric value. For instance, if our function is not defined on the whole

domain X, we can extend it to taking values in (Y+Null), as in Exception

Monad.

To deal with stateful functions, we need to apply the notion of State

Machine Monad.

http://en.wikipedia.org/wiki/Monads_in_functional_programming#I.2FO
m-exc1.html
m-exc1.html
m-sm1.html
m-sm1.html

Monads in Programming - references

See http://en.wikipedia.org/wiki/Monads_in_functional_programming

as the primary source of references.

This link:

http://mikael.jansson.be/hacking/misc/export/83/tutors_and_papers/haskell/db-utwente-

0000003696.pdf is a complicated, boring but comprehensive explanation of monadic

terminology used in programming.

"Comprehending “ Comprehending Monads” ' by Frederik Eaton:
http://ofb.net/~frederik/comp2.pdf is a 3-page nice glossary of terms and notions.

In Haskell, u is called return, and m is called combinator, or 'join'.

Haskell books mention List as an example of a monad, and have a rather

special interpretation of State Machine Monad.

Another example of a monad is Google's map/reduce.

http://en.wikipedia.org/wiki/Monads_in_functional_programming#I.2FO
http://en.wikipedia.org/wiki/Monads_in_functional_programming
http://mikael.jansson.be/hacking/misc/export/83/tutors_and_papers/haskell/db-utwente-0000003696.pdf
http://mikael.jansson.be/hacking/misc/export/83/tutors_and_papers/haskell/db-utwente-0000003696.pdf
http://ofb.net/~frederik/comp2.pdf
http://research.microsoft.com/Users/simonpj/Papers/marktoberdorf/mark.pdf
http://en.wikipedia.org/wiki/Monads_in_functional_programming#I.2FO
http://sneezy.cs.nott.ac.uk/fplunch/weblog/?p=23
http://labs.google.com/papers/mapreduce.html

Haskell IO Monad

Haskell introduced IO monad as if to overcome the awkwardness of

explanation, how come a function can have a side-effect.

Here is the trick they use in Haskell. Take the State Machine Monad, as we

did before. Imagine that A, the state set, represents the whole outside world,

and X is the set of function results.

In this model, every state machine becomes a function. A is further

represented as a Cartesian product of two String sets, the first component

being "input", and the second - "output". Special transition functions are

introduced, one, getc, pops a character from input; the other, putc, adds

a character to output.

I am just curious, what exactly does this model try to achieve.

Contents
Introduction .. 2

Category .. 3

Examples of Categories .. 4

More Examples of Categories .. 5

Extra Material .. 6

Functor ... 7

Examples of Functors .. 8

More Examples of Functors .. 9

Natural Transformation .. 10

Examples of Natural Transformations .. 11

More Examples of Natural Transformations .. 12

Monad .. 13

Examples of Monads ... 14

More Examples of Monads ... 15

Exception Monad .. 16

State Machine Monad .. 17

State Machine (continued) .. 18

Monads in Programming ... 19

Monads in Programming - references .. 20

Haskell IO Monad ... 21

